ELASTIC CONSTANTS SUBJECTED TO HYDROSTATIC PRESSURE

and

T{z = 2C44312 (18)

after having gone through a long algebra, we
find the expressions for the effective second-
order elastic constants as follows:
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Where cu,, Cuy and ¢y, are the second-,
third- and fourth-order elastic constants of
crystal in Voigt’s notation, respectively, and
they are expressed in accordance with the
thermodynamic definition[3].

It may be noted that, in equations (19-21),
the coefficients of the terms in n with the
second- and third-order elastic constants are
the conventional expressions for the effective
elastic constants[l,4-6] and they agree with
those derived initially by Birch[1] when the
third-order elastic constants in Birch’s defini-
tion are converted into those of more general
thermodynamic definition.* However, the
coefficients of the terms in n* in equations (20)
and (21) are at variance with ones given by

*The relations between the c,,, defined by Brugger
(cBr.) and those by Birch (cfiy) are: cffy = 6¢5}1, c“2
=2clls, o= cls, ot = ks, 0144’—%05’44, and ¢l
=4cli. It is noted that the relation between Birch’s cy56
and Briigger’s c,s should be as given in this paper,
provnded 456 term in the expression of the strain energy
is [dcase( T)xz"h'z”’lan""’lm"}sz"}w)] However, if the term in
the expression of the strain energy is [Csse(712M23ms +
M21M32Mi3)] as in Birch’s original paper (e.g. equation 12

of[1]), the relation should be ¢ = icis.

419

Ghate[6]. In light of the present analysis, the
writer believes that the minus signs of the
quantities ¢y; and ¢y, found in the n* term of
Ghate’s equation (23) should have been plus
signs. And, as for the expression for Cy,
the quantity (+4c,.4s) should be found in the
7? term of Ghate’s equation (24).

3. THE ULTRASONIC EFFECTIVE ELASTIC
CONSTANTS

The expressions of the effective elastic
constants as given by equations (19-21) can
be either the adiabatic or isothermal expres-
sions, and the proper designation of these is
obviously done bg adding the proper super-
script either ‘s’ or ‘7" to all the elastic constants.
The acoustic data resulting from the usual
acoustic experiments with pressure are neither
thermodynamically adiabatic nor thermo-
dynamically isothermal quantities, but they
are ‘thermodynamically mixed’ isothermal-
adiabatic quantities[7]. Thus, in this section,
we seek for the expressions of the effective
elastic constants that may be resulting from
the ultrasonic-pressure experiments at high
pressures.

Recalling the usual behaviors of ultrasonic
wave velocities in the medium of a cubic
crystal[8,9], we note that a longitudinal
stiffness ¢,; and shear stiffness cy, result
directly from measurements of the longitudi-
nal and transverse wave velocities in the [001]
direction of the crystal, respectively. If one
measures a transverse wave velocity in [110]
polarized in the [110] direction, the resulting
stiffness constant is (¢;;— ¢y2)/2. Thus, from
this, one finds immediately the elastic constant
c1» as a typical procedure. Following exactly
the same procedure as the above but subjected
to hydrostatic pressure, we find the ultrasonic
effective elastic constants of cubic crystals as:

C1yquitrasonio = ¢+ (cfh +C" + 3B")
+9* (i, + C,m+3C ™
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Cisaitrasonioo = €2 +m(cf + C™ — 3B7)
+nf—tcls + Ca - C.m +ic Ti23
—4C T+ CyT4:387) (23)

Casutrasonio = €14+ m(css+C."+ 3B7)
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Where B” = (c¢]; +2c¢%,)/3 and the C; are
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The superscripts ‘s’, ‘7" and ‘m’ designate
thermodynamically adiabatic, thermodynami-
cally isothermal, and thermodynamically
mixed elastic constants, respectively. Since
the C; are related to the pressure derivatives
of the linear elastic constants c,,, these
relationships are to be found.

Co=cint2c1
Cy=2c12+Cpa3

C.= c1at+2c

Cq= cun+2¢112

Ce = Cr1pt+ Crioat+ Craa3
Cr = craat 21155

Cy = 2¢y355+ Cia66-

4.RELATION OF PRESSURE DERIVATIVES OF THE
EFFECTIVE ELASTIC CONSTANTS TO PARTIAL
CONTRACTIONS OF THE HIGHER-ORDER
ELASTIC CONSTANTS

The pressure-dependent second-order

elastic constants are[7, 10]

Ciii(P) =ve + PDjji
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where Dy = 8;;0,;— 838 — 88;. V denotes
the volume of crystal at reference state
characterized by the hydrostatic pressure P,
and 7 is the strain tensor corresponding to an
arbitrarily deformed state characterized by
that pressure P. V° is defined by the relation
(V[V°) = A3, where \ is a factor given by the
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coordinates of a material point in two reference
states a; and a3 according to (a;/aj) = \. The
Lagrangian strain tensors corresponding to
these two reference states are n;; and 7, and
they are related by

MG = Ny +€dy

where € = $(A\>—1). Since from thermodyna-
mics (3/0P)y=—(V/By)(8/dV )y and (ON/V )y =
3V°, we find by differentiating equation (32)
that
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Note that the first term in equation (33) is by
definition the zero-pressure second-order
elastic constants. The second term is, how-
ever, thermodynamically mixed third-order
elastic constants at zero pressure. Thus,
from equation (33), it follows that[7]

aC%i 1
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v¢ is the Griineisen constant, 8 is the coeffi-
cient of volume expansion, and A4 is the ratio
of the adiabatic bulk modulus to the isothermal
bulk modulus and it is given by 4 = 1+ TBy,.
The quantities given by equation (35) are the
primary experimental quantities which result
from the usual ultrasonic-pressure experi-
ments at low pressures. For cubic crystals,
equation (35) reduces to:

(35)




